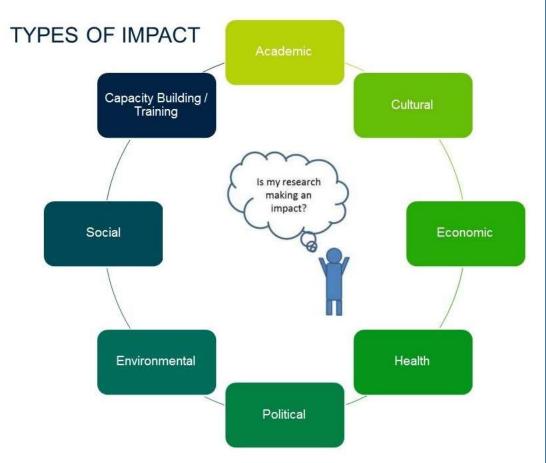


Health Research Impact Assessment


Bahareh Yazdizadeh

Associate professor of epidemiology Knowledge Utilization Research Center (KURC) Tehran University of Medical Sciences

25 تير 1404

The objectives of the presentation

- What's the impact?
- Why measure the impact?
- How to measure the impact?
- Research impact and knowledge translation

What's the research impact?

Impact definition

• "... an effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia"

Source: http://www.hefce.ac.uk/rsch/REFimpact/

• "... is the demonstrable contribution that research makes to the economy, society, culture, national security, public policy or services, health, the environment, or quality of life, beyond contributions to academia"

Source: http://www.arc.gov.au/research-impact-principles-and-framework#Definition

Why measure the impact?

Advocacy

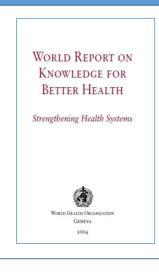
to demonstrate the benefits of supporting research, enhance understanding of research and its processes among policy makers and the public; to make the case for policy and practice Change.

Allocation

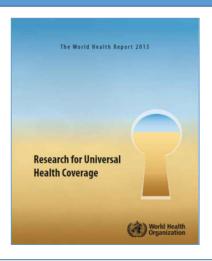
to determine the best approach for allocating funds in the future, making the best possible use of a limited funding pot.

Accountability

to show that money has been used efficiently and effectively, and hold researchers to account.


Analysis

to understand how and why research is effective and how it can be better supported, feeding into research strategy and decision making by providing a stronger evidence base.


Table 2.1 Purposes of the six frameworks investigated in detail

	REF	ERA	Productive Interactions	NIHR	CAHS	STAR METRICS
Advocacy	1	✓	✓.	✓	1	✓
Accountability	✓	1	✓	✓	✓	✓
Analysis			✓	✓	✓	
Allocation	✓	1				/

Why measure the impact?

Why is research important for universal health coverage?

Currently most research is invested in new technologies rather than in making better use of existing knowledge. Much more research is needed to turn existing knowledge into practical applications.

Despite a multinational commitment to universal coverage, there are many unsolved questions on how to provide access to health services and financial risk protection to all people in all settings.

Many questions about universal coverage require local answers, All countries need to be producers of research as well as consumers.

Health Research System

Why measure the impact?

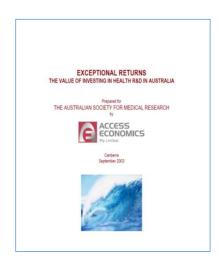
Function	Operational component		
Stewardship	1. Define and articulate vision for a health research system		
	Identify appropriate health research priorities and coordinate adherence to them		
	 Set and monitor ethical standards for health research and research partnerships 		
	4. Monitor and evaluate of the health research system		
Financing	5. Secure research funds and allocate them accountably		
Creating and sustaining resources	Build, strengthen and sustain the human and physical capacity to conduct, absorb and utilize health research		
Producing and	7. Produce scientifically valid research outputs		
using research	Translate and communicate research to inform health policy, strategies, practices and public opinion		
	 Promote the use of research to develop new tools (drugs, vaccines, devices and other applications) to improve health 		

Source: adapted from Pang et al., 2003 (5).

Iran Context

The research budget has increased from 0.55% of the GDP in 2001 $\implies 0.87\%$ of the GDP in 2009,

It was meant to be raised to 2.5% in 2015, although this did not happen.


Main reason: the policymakers' lack of belief in the impacts of research compared to other investments

Sepanlou SG, Malekzadeh R. Health research system in Iran: an overview. Arch Iran Med. 2012;15(7):392–3.

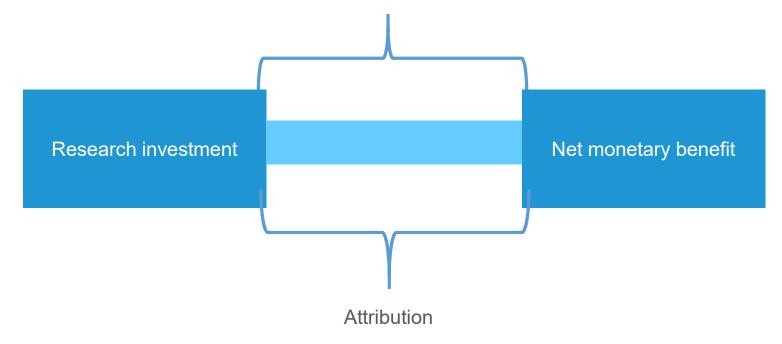
How to measure the impact?

- Top-down (ecologic approach)
- Bottom-up (Case studies)

Ecological approach

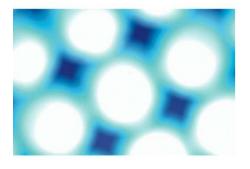
This paper estimates that half of the historical gains in health span are attributable to global health R&D and 2.5% is assumed attributable directly to Australian R&D.

Historically, annual rates of return to Australian health R&D were up to \$5 for every \$1 spent on R&D.



Australian health R&D expenditure between 1992-93 and 2004-05 is estimated to return a net benefit of approximately \$29.5 billion.

For the average dollar invested in Australian health R&D, \$2.17 in health benefits is returned, with a minimum of \$0.57 and maximum of \$6.01.


To calculate the return on investment, we have to make four key estimates

Time lag between research investment and health gain

Medical Research: What's it worth?

Estimating the economic benefits from medical research in the UK

Health Economics Research Group (HERG) Brunel Urkenstry Office of Health Economics (SHE) FAND Europe For the Medical Research Council, the Welcome Turst and the Academy of Medical Sciences November 2008.

	Cancer	CVD	MSD	Mental Health
Average annual research investment	£377m (in constant 2011/12 prices)	£131m (in constant 2005/06 prices)	£70m (in constant 2013/14 prices)	£60m (in constant 2005/06 prices)
Time lag (average time between publication of cited publication and clinical guideline)	15 years	17 years	16 years	12 years
Attribution (proportion of papers that cite a UK address from the papers cited on guidelines)	17%	17%	30%	28%
Total net health gain	£161bn (in constant 2011/12 prices)	£53bn (in constant 2005/06 prices)	£16bn (in constant 2013/14 prices)	£29bn (in constant 2005/06 prices)
IRR (health gain)	10%	9%	7%	7% 13

http://ijhpm.com Int J Health Policy Manag 2017, 6(7), 395–402

doi 10.15171/ijhpm.2016.147

Original Article

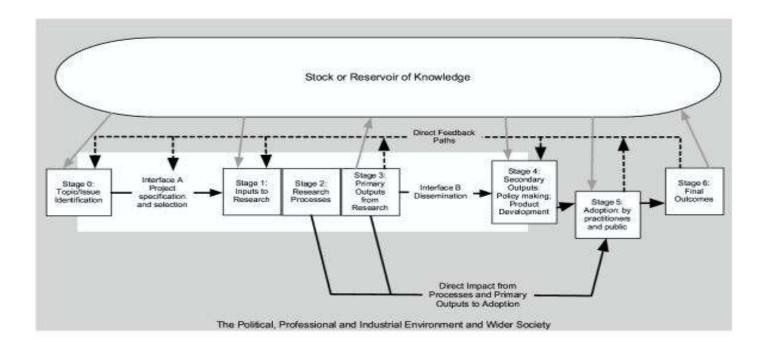
Impact of Health Research Systems on Under-5 Mortality Rate: A Trend Analysis

Bahareh Yazdizadeh^{1*}, Mahboubeh Parsaeian², Reza Majdzadeh^{1,2}, Sima Nikooee¹

Table 1. Time-Adjustments of Variables Used in the Model

	U5MR	TA/CSA/GDP	MVC	HDI	СРІ
	1990	Average of 1986-1990	Average of 1986-1990	1990	
	1995	Average of 1991-1995	Average of 1991-1995	1995	
Time	2000	Average of 1996-2000	Average of 1996-2000	2000	Average of 1996-2010
	2005	Average of 2001-2005	Average of 2001-2005	2005	
	2010	Average of 2006-2010	Average of 2006-2009	2010	

Abbreviations: TA: total articles; HDI: human development index; U5MR, under-five mortality rate; GDP, gross domestic product; MVC, measles vaccination coverage; CPI, corruption perception index; CSA, child-specific articles.

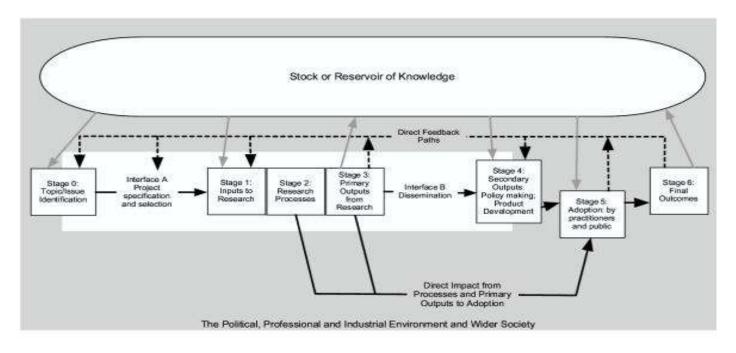

Results: Among all the models, 'the random intercept and random slope models' had lower residuals. The same variables of CSA, HDI, and time were significant and the coefficient of CSA was estimated at -0.17; meaning, with the addition of every 100 CSA, the rate of U5MR decreased by 17 per 1000 live births.

Conclusion: Although the number of CSA has contributed to the reduction of U5MR, the amount of its contribution is negligible compared to the countries' development. We recommend entering different types of researches into the model separately in future research *and* including the variable of 'exchange between knowledge generator and user.'

Case studies

Case studies examine the impact of specific health research, investigate the details of impact and propose ideas for increasing it.

Payback logic model


(Buxton M, Hanney S: How can payback from health research be assessed? Health Serv Res Policy 1996)

Which approach?

- Attribution problem
- Time lag

Approach	Advantages	Disadvantages
Top down (ecologic approach)	A little work for data collection (using exist data bases)	Attribution problem
Bottom up (case studies)	Control of some part of attribution problem	A lot of work for data collection (many individual interviews and document analysis)

Payback logic model

(Buxton M, Hanney S: How can payback from health research be assessed? Health Serv Res Policy 1996)

CAHS 2009 (Impacts)

Advancing Knowledge

Building Capacity

Informing Decision Making

Health Benefits

Broad Economic and Social Benefits

BASIC SCIENCE RESEARCH

Preclinical and animal studies

Defining mechanisms, targets, and lead molecules

TRANSLATION TO HUMANS

Proof of concept Phase 1 clinical trials

New methods of diagnosis, treatment, and prevention

TRANSLATION TO PATIENTS

Phase 2 and 3 clinical trials

Controlled studies leading to effective care

Translation from basic science to human studies

TRANSLATION TO PRACTICE

Phase 4 clinical trials and clinical outcomes research

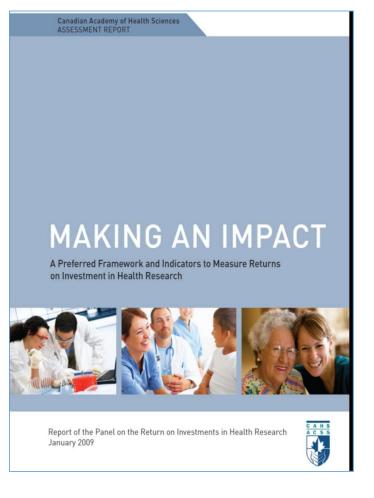
Delivery of recommended and timely care to the right patient

TRANSLATION TO COMMUNITY

Populationlevel outcomes research

True benefit to society

Translation of new data into the clinic and health decision making


Translational Research Pathway

Translation is the process of turning observations in the laboratory, clinic and community into interventions that improve the health of individuals and the public — from diagnostics and therapeutics to medical procedures and behavioral changes.

https://ncats.nih.gov/about/about-translational-science

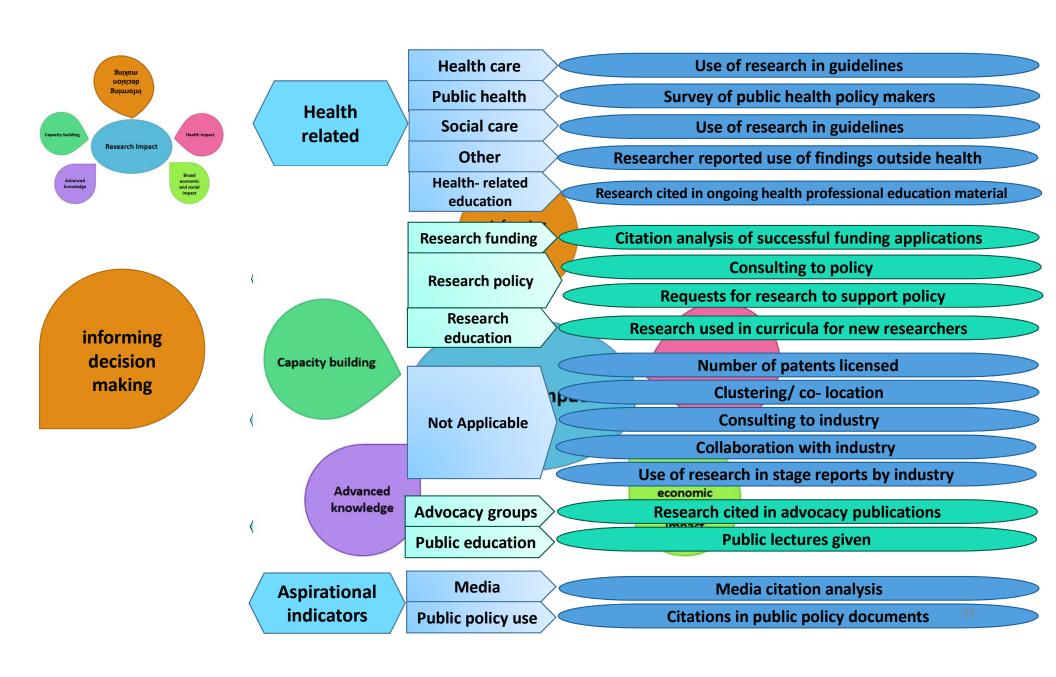
Figure 1. Translational Research Framework: testing policy, program and service innovation

Indicators of each domains

Aggregation levels

Individual

Research group/grant
Institutions/departments


Funding agency

Provincially/ Nationally,

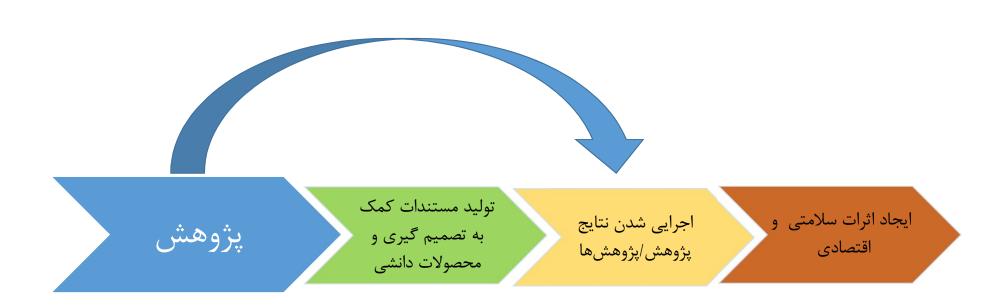
Internationally

Pillars

- Biomedical Research
- Clinical Research
- Health Services Research
- Population and Public Health Research
- Cross Pillar Research

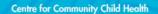
@ 2024 The Author(d)

Cite as, Yardizadeh B, Ahusuth A, Najati F, Mohammad K, Fariden M, Khalili D, Mahdavi M, Bahimpour E, Jouyhan A, Kelishadi R, Minazzam Ilizza M. Elitekhan Baradann M, Falahat K, Nikooer S, Establishing research imput assessment in hun. The first upoet from a non-high-income country. J Glob Health 2024;1:4:04050.


Establishing research impact assessment in Iran: The first report from a non-high-income country

Bahareh Yazdizadeh^{1*®}, Ayat Ahmadi¹®, Farid Najafi²®, Kazem Mohammad³®, Mohammad Fariden⁴®, Davood Khalili⁵®, Mahdi Mahdavi⁶®, Elaheh Rahimpour⁷®, Abolghasem Jouyban⁸®, Roya Kelishadi⁹®, Mohammad Reza Monazzam¹⁰®, Monir Baradaran Eftekhari¹¹®, Katayoun Falahat¹²®, Sima Nikooee¹®, Reza Majdzadeh^{13*}®

Background This study presents the first report on research impact assessment (RIA) in non-high-income countries, undertaken as a pilot initiative in 2021. Within it, we aimed to explore the feasibility of employing the 'payback' model for evaluating the impact


مسیر پژوهش به اثر

(برنامه ارزشیابی اثرات پژوهش های سلامت ۱۴۰۰، معاونت تحقیقات و فناوری وزارت بهداشت، درمان و آموزش پزشکی)

برنامه ارزشیابی اثرات پژوهش های سلامت

شاخص	حيطه اثر
تولید مستندات کمک به تصمیم گیری در سطوح بین المللی، ملی و استانی	الف
استفاده از نتایج پژوهشها در تهیه مستندات کمک به تصمیم گیری	تولید مستندات کمک تصمیم گیر و محصولات دانشی
استفاده از نتایج پژوهشها در سیاست گذاریهای ملی (داخل و خارج از وزارت بهداشت)	ب
استفاده از نتایج پژوهشها در سیاست گذاریهای استانی، دانشگاهی و شبکه بهداشتی و درمان شهرستان	اجرایی شدن نتایج پژوهش/پژوهشها
نتایج پژوهش اجرایی شده و اثرات سلامتی آن (اثر بر شیوع و بروز بیماری، کیفیت زندگی و یا طول عمر) اندازه گیری شده باشد.	
نتایج پژوهش اجرایی شده و اثرات اقتصادی آن (اثر بر درآمدزایی و افزایش کارایی در سطح فرد و سازمان) انئازه گیری شده باشد.	

The Melbourne Children's Knowledge Translation and Research Impact Project

FINAL REPORT:

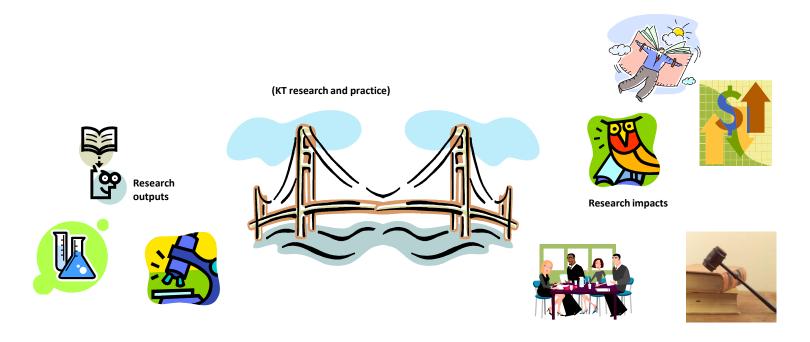
A FRAMEWORK FOR ACTION

MAY 2017

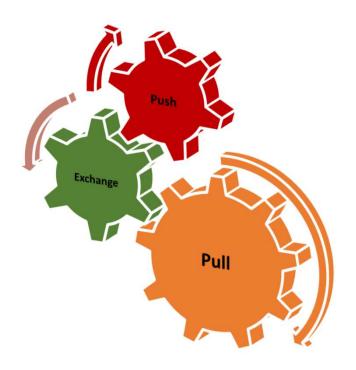
RESEARCH IMPACT

KNOWLEDGE TRANSLATION

RESEARCH



Knowledge Translation and Impact Planner (KTIPs)


Instructional Guide

Knowledge Translation is the bridge between discovery and impact

It's is about making a difference

Lavis, J; Roberston, D.; Woodside, J.; McLeod, C.B.; Abelson; J. (2003). « How Can Research Organizations More Effectively Transfer Research Knowledge to Decision-Makers »; The Milbank Quarterly, 81 (2): 221-248.

Esmail et al. Implementation Science (2020) 15:11 https://doi.org/10.1186/s13012-020-0964-5

Implementation Science

SYSTEMATIC REVIEW

Open Access

A scoping review of full-spectrum knowledge translation theories, models, and frameworks

Rosmin Esmail^{1,2,3,4}, Heather M Hanson^{1,2}, Jayna Holroyd-Leduc^{1,2,3,4,5}, Sage Brown^{1,6}, Lisa Strifler^{7,8}, Sharon E Straus^{7,9}, Daniel J. Niven^{1,2,3,10} and Fiona M. Clement^{1,3,6*}

small 1,2,3,4 , Heather M Hanson 1,2 , Jayna Holroyd-Leduc 1,2,3,4,5 , Sage Straus 2,9 , Daniel J. Niven 1,2,3,10 and Fiona M. Clement 1,3,6

Process Model/Classic Theory n=1 *Stage Theory of Organizational Change Implementation Theory Classic Theory/Determinant Framework n=2 n=0 *Community Connection Model *Community to Community Mentoring (CCM) model Process Models n=18 Process Model/Evaluation Framework n=1 *CAN-IMPLEMENT (Canadian Guideline Adoption Study *Evidence-driven community health Group) *co-KT framework improvement process (EDCHIP) Determinant Frameworks n=3 *CollaboraKTion framework *Consolidation Framework for *Collaborative Model for Achieving Breakthrough Implementation Research (CFIR) Improvement *Social Marketing Framework *Community based knowledge translation framework *Design focused implementation model *Knowledge Integration Process *A staged model of innovation development and diffusion of health promotion programs Evaluation Frameworks n=3 *Stages of research and evaluation *A conceptual framework for planning and *Healthcare improvement collaborative model (HICM) improving evidence-based practice *Knowledge-to-Action (KTA) *PRECEDE-PROCEED *KT framework for AHRQ patient safety portfolio and *Reach Effectiveness Adoption grantees Implementation Maintenance (RE-AIM) *LEAN Transformation Process *Model for Accelerating Improvement *National Center on Health, Physical Activity and Classic Theory n=8 Disability *Diffusion of Innovations Knowledge, Adaptation, Translation and Scale-up (N-*Interorganizational Relations Theory KTAS) framework *Precaution Adoption Process Model (PAPM) *Plan-Do-Study-Act (PDSA) Cycle *Self-Regulation Theory *Quality Implementation Framework *The translational model of the Black Dog Institute *Social Cognitive Theory (SCT) *Western Australia (WA) Health Network Policy *Social Ecology Model for Health Promotion **Development and Implementation Cycle** *Social Learning Theory (SLT) *Transtheoretical Model of Behaviour Change Fig. 3 Categorization of full-spectrum knowledge translation theories, models, and frameworks (n = 36)

Push activities

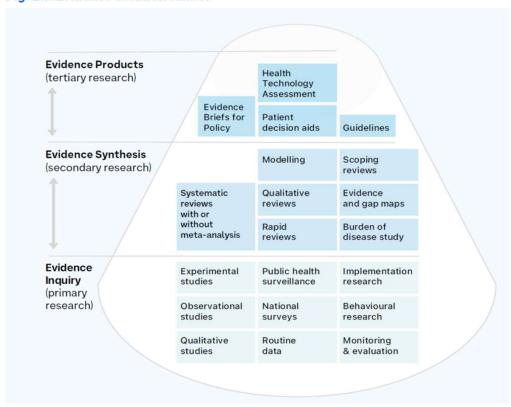
Gholami et al. Health Research Policy and Systems 2011, 9:10 http://www.health-policy-systems.com/content/9/1/10

RESEARCH

Open Access

How should we assess knowledge translation in research organizations; designing a knowledge translation self-assessment tool for research institutes (SATORI)

Jaleh Gholami^{1,2}, Reza Majdzadeh^{2,1*}, Saharnaz Nedjat^{1,2}, Sima Nedjat², Katayoun Maleki², Mahnaz Ashoorkhani², Bahareh Yazdizadeh^{2,1}


این ابزار در چهار بخش طراحی شده:

- ۱- سوال پژوهش: آیا نیازهای تصمیم گیرندگانی که از نتایج تحقیق استفاده می کنند را شناسایی می کنیم و به صورت موضوع پژوهشی درمی آوریم؟
 - ۲- تولید دانش: آیا شواهدی تولید می کنیم که در تصمیم گیری ها قابل استفاده باشد؟
- ۳- انتقال دانش: آیا سازوکارهای مناسب برای انتشار نتایج پژوهش های سازمان به مخاطبین آنها وجود دارد و اقدامات مناسب برای انتقال صورت می گیرد؟
 - ۴- ترویج استفاده از شواهد: آیا به تصمیم گیرندگان کمک می کنیم که بتوانند از نتایج پژوهش ها بهتر استفاده کنند؟

سوال پژوهش

- انجام پژوهش مبتنی بر نیاز
- شناسایی نیازهای دانشی بر اساس چالش های سلامت
- انجام مطالعات ثانویه و تولید ابزارهای کمک تصمیم گیر

PULL activities

- All activities which promote use of knowledge in target groups Policy maker and manager, Health care provider, Patient and public, Industry, Media
- Change behavior

Exchange activities

Brokering

individuals, groups, organizations in PUSH, PULL or as independent organizations.

- ✓ Find and link people
- ✓ Work with both parties to scan the literature, summarize what exists, identify gaps
- ✓ Work with researchers and users of research to create research-able questions from policy/management issues
- Ensure that both researchers and users of research are engaged throughout the research process

Iran?

Networking

formal network of producer and user of knowledge. Examples:

- Knowledge translation platforms (KTP)
 Evidence Informed Policy Network (EVIPNet)
- Community of practice
- Formal knowledge networks

Iran?

RESEARCH Open Access

How research funding agencies support science integration into policy and practice: An international overview

Pernelle A Smits^{1,2*} and Jean-Louis Denis¹

RESEARCH ARTICLE

Funding change: An environmental scan of research funders' knowledge translation strategic plans and initiatives across 10 high-income countries/regions

Christine Fahim^a, Danielle Kasperavicius^a, Robyn Beckett^a, Keelia Quinn de Launay^a, Arthana Chandraraj^a, Amanda Crupi^b, Suvabna Theivendrampillai^a, and Sharon E. Straus^a*

^aKnowledge Translation Program, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond St, Toronto, M5B 1W8, Canada; ^bCanadian Institutes of Health Research, 160 Elgin Street, 10th Floor, Ottawa, K1A 0W9, Canada

*sharon.straus@utoronto.ca

Thank you